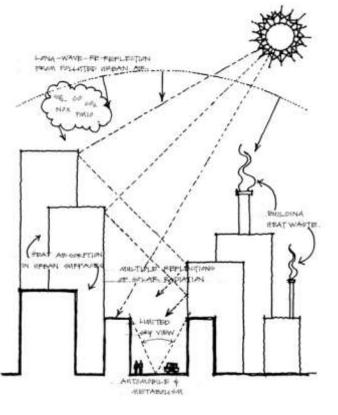
Urban microclimate in temperate cities: **Planning practice implications**


London Climate Change Partnership / Buildings & Cities joint event

Rohinton Emmanuel, Glasgow Caledonian University

30 Jun 2021

What de we know?

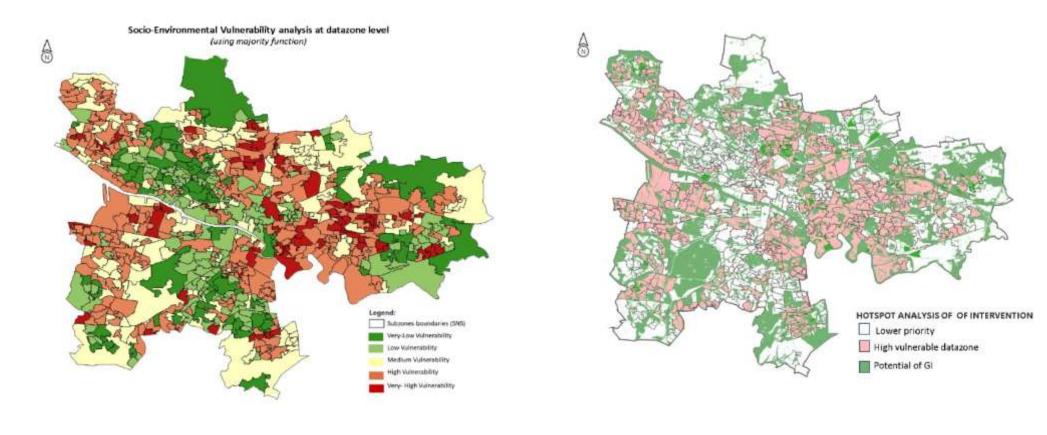
TYPE OF IMPACT	IMPACT PARAMETER	DESCRIPTION OF IMPACT		
Climate		Up to 6°C increase in air temperature in relation to the surroundin countryside —typically highest at night		
	Relative humidity	Drier conditions in cities but depends on water use		
		Increased precipitation downwind of cities (in summer and the mornings), exacerbated by air pollution		
		Stronger feedback in highly urbanised regions (such as Western Europe); unclear elsewhere		
Wellbeing and biodiversity		Deterioration due to both transportation as well as waste heat from buildings (also act as a greenhouse gas)		
	Vegetation and biodiversity	Reduced ability to provide ecosystem services by vegetation; enhancing the ability of invasive species to thrive as well as decreasing native species' ability to adapt		
	Human health	Risk of mortality due to heat increases by between 1% and 3% per 1°C, but this is tempered by population density, economic health of city, fraction of elderly, and existing inequities		
Carbon	Energy consumption	Decreased energy demand in winter and increased demand in summer, but this depends on building geometries; temporal differences in peak energy demand will have different carbon consequences depending on the electricity generation mix		
	Water (quality and quantity)	Increases in water use (e.g. for irrigation) as well as runoff (due to paving and roads). Sealed surfaces also reduce water availability to absorb heat, leading to temperature changes and loss of water quality		
	Economic impacts	Higher cooling loads (thus, higher energy use) and productivity losses have economic consequences. This is further exacerbated by air quality deterioration		

Approaches to mitigation

	GOAL	APPROACH	T	DOL	.S
What	<i>Climate Improvement</i> <i>Health and Wellbeing</i>	Temperature control to manage heatwaves and mitigate overheating, reduce interference with humidity and precipitation		s (N <i>b</i> S)	ល
		Thermal comfort and air quality enhancement; Health, productivity and comfort; and improvements to biodiversity	1 1 1 form manipulation	sed solution	erial properties
	Carbon management	Efficiency enhancement in energy and water use			
Where	Macro-scale	City-wide interventions to improve climate / carbon	Urban f	ure-ba	Matei
	Micro-scale	Neighbourhood or street-scale interventions for more immediate enhancement of well-being	Ur Natu	Natu	

Planning and Design

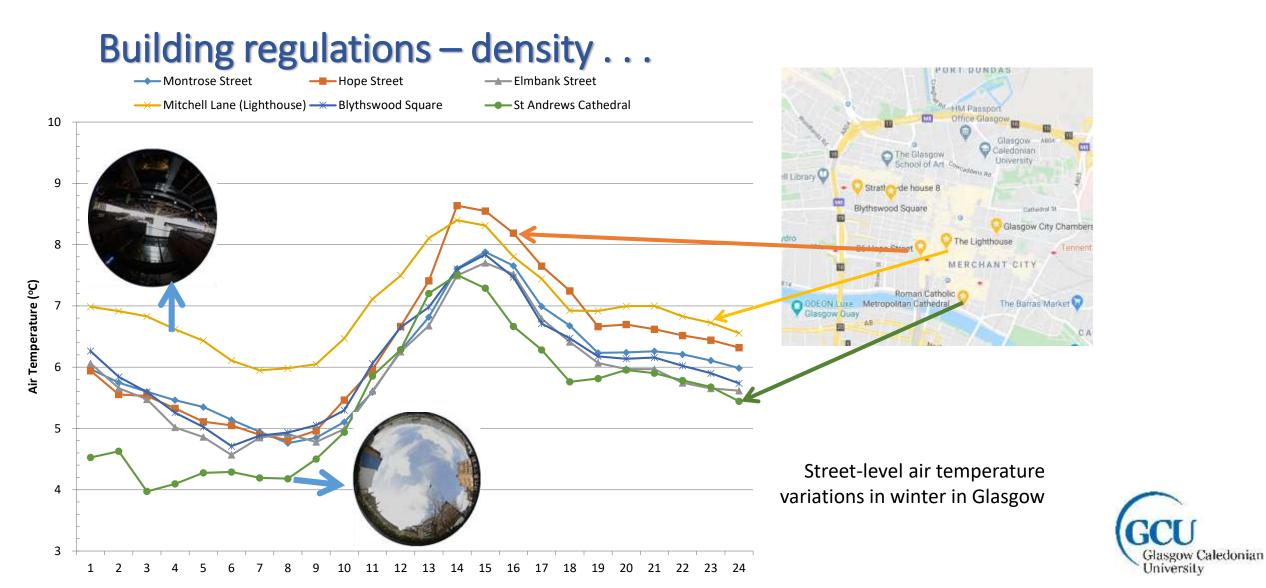
APPROACH	DESCRIPTION	INTENDED USERS	POINT OF APPLICATION
Urban climate mapping	Urban climate mappings (UCMaps) consist of a UC-AnMap, which analyses climatic, geographical and planning information in map form, and a UC-ReMap, which develops planning instructions from an urban climatic point of view. Useful technical standards exist for UCMap (VDI 1997)	Urban planners and urban designers	Masterplan, zoning plan and local development plan
Shading analysis	Optimising street canyon geometry to enhance the thermal comfort in public places offers several approaches to enhance shading, especially in the public realm	Urban designers, building designers and building services engineers	Street design and preliminary planning approval for buildings
Ventilation analysis	Similar to Air Ventilation Assessment (AVA) in place in Hong Kong since the SARS epidemic in 2003 to monitor the air flow effects of buildings	Urban planners and public health officials	Masterplan, urban regeneration and neighbourhood development plan
Planning codes as toolkits to manage urban heat	The 'cool roofs' programme (enhancing roof albedo); 'green roof' (intensive and extensive roof green cover); 'cool pavements' (similar to cool roofs, but for pavements) and urban forestry regulations (especially in the U.S.)	Urban planners, building designers, public health, health and social care sectors	Streetscape design and building design



Where are interventions needed?

POLICY AREAS	ACTIONS	
Public health	Hotspot mapping; heat-related workload scheduling; and heat-related health and safety management	
Building regulations	Heat stress-resistant building design guidelines; building morphology and form controls; control of building surfaces/material properties; financial incentives; include heat stress resistance in building energy certification; demonstration buildings	
Planning actions	Cool refuges/public places for adaptation; heat mapping as part of an urban planning framework; urban climate mapping; ventilation and shadow assessment; open space/nature-based solutions (NbS) as part of the planning framework, inclusion of future climate scenarios for current regulations and practices	
Infrastructure and services	Enhance infrastructure demand monitoring and modelling to account for heat stress; adopt public transport infrastructure to heat stress; review water and electricity infrastructure to manage heat-related demand	

Hotspot mapping



Building regulations - density

in July in Glasgow Caledonian University

Building regulations – inter-dependency

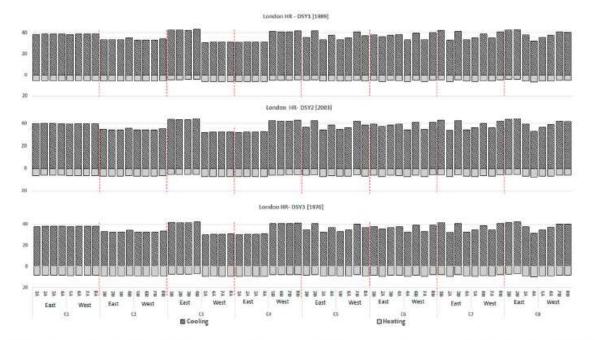
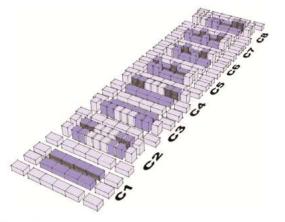



Figure 8. Output performance for all buildings in their eight-street canyon configurations (C1–C8) for the three London Heathrow (HR) design summer year (DSY) weather files (east- and west-facing buildings only) (kWh/m²/yr).

Streets with similar FARs but in different geometries have significantly different energy consumption at a local scale

Source: Futcher, Mills & Emmanuel, 2018

Figure 4. Geometric arrangement for the two office building forms along the eight urban canyons. Each building can be identified by its canyon number (C1–C8), building reference number (1–4) east facing, (5–8) west facing and building form (A–B). The non-shaded or pale buildings represent the boundary conditions, *i.e.* the surrounding system and infill buildings.

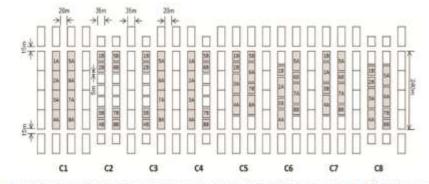
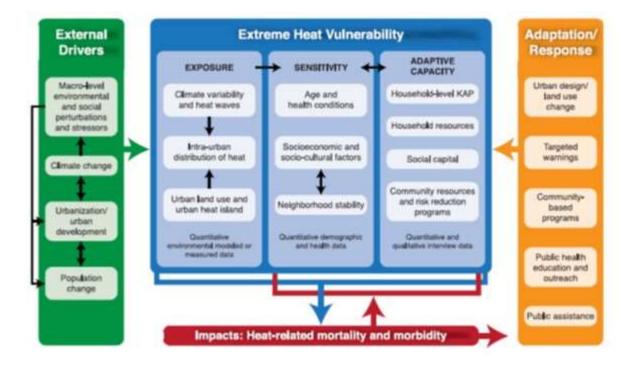



Figure 6. Identification layout of all buildings within their urban configuration. Each building can be identified by its canyon number (C1–C8), building reference number (1–4) east facing, (S–8) west facing and building type (A–B). The non-shaded buildings represent the boundary conditions, *i.e.* the surrounding system and infill buildings.

Building regulations – Key questions

- 1. How compact?
- 2. How intense?
- 3. What's the layout



GCU Glasgow Caledonian University

Source: Berghauser Pont & Haupt, 2009

Bringing it all together

A Heat vulnerability framework Source: Wilhelmi & Hayden, 2010

Key Lessons

- Clarity of focus needed:
 - Climate, comfort, carbon . . .
- Scale is important
 - Macro (city wide): wind corridors, climatic maps
 - Micro (neighborhood or single street): shading, GI
- > Density is a key variable for urban climate control, but . . .
 - Which density? \uparrow or \rightarrow
- > Urban climate management as part of the climate change risk management

References

Berghauser Pont MY, Haupt PA. 2009. Space, Density and Urban Form, ISBN 9789052693750, http://resolver.tudelft.nl/uuid:0e8cdd4d-80d0-4c4c-97dc-dbb9e5eee7c2

Emmanuel R. 2021. Urban microclimate in temperate cities: a summary for practitioners, Buildings and Cities, 2(1), pp. 1-9, https://doi.org/10.5334/bc.109

- Futcher J, Mills G, Emmanuel R. 2018. Interdependent energy relationships between buildings at the street scale, *Building Research and Information*, **46**(8): 829-844, https://doi.org/10.1080/09613218.2018.1499995
- Wilhelmi OV, Hayden MH. 2010. Connecting people and place: a new framework for reducing urban vulnerability to extreme heat, *Environmental Research Letters*, 5(1), 014021. <u>https://doi.org/10.1088/1748-9326/5/1/014021</u>
- Zala M. 2020. Vulnerability and Greendex: a framework to optimise the impact of green infrastructure in improving social and environmental vulnerability. In, Emmanuel R. et al., (eds.), MUrCS Proceedings 2020, ISBN 978 951 827 354 0, http://urn.fi/URN:ISBN:978-951-827-354-0

Thank you

Prof Rohinton Emmanuel Director, The BEAM Research Centre Glasgow Caledonian University 70 Cowcaddens Road Glasgow G4 0BA T: +44 (0)131 331 3217 E: <u>Rohinton.Emmanuel@gcu.ac.uk</u>

