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• Multiple factors are associated with
health effects of heat exposure.

• Cities in the West Midlands have a pro-
nounced UHI.

• Care homes and hospitals are exposed
to higher ambient temperatures than
average.

• Housing types more likely to overheat
are located in the warmest parts of the
city.
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Spatial distribution of factors that may relate to risks associated with heat-health effects across theWest Midlands.
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Heatwaves can lead to a range of adverse impacts including increased risk of illness andmortality; the heatwave
in August 2003 has been associated with ~70,000 deaths across Europe. Due to climate change, heatwaves are
likely to become more intense, more frequent and last longer in the future. A number of factors may influence
risks associatedwith heat exposure, such as population age, housing type, and location within the UrbanHeat Is-
land, and such factors may not be evenly distributed spatially across a region. We simulated and analysed two
major heatwaves in the UK, in August 2003 and July 2006, to assess spatial vulnerability to heat exposure across
theWestMidlands, an area containing ~5million people, and how ambient temperature varies in relation to fac-
tors that influence heat-related health effects, throughweighting of ambient temperatures according to distribu-
tions of these factors across an urban area. Additionally we present quantification of how particular centres such
as hospitals are exposed to the UHI, by comparing temperatures at these locations with average temperatures
across the region, and presenting these results for both day and night times.We find that UHI intensity was sub-
stantial during both heatwaves, reaching a maximum of+9.6 °C in Birmingham in July 2006. Previous work has
shown some housing types, such as flats and terraced houses, are associated with increased risk of overheating,
and our results show that these housing types are generally located within the warmest parts of the city. Older
age groups are more susceptible to the effects of heat. Our analysis of distribution of population based on age
group showed there is only small spatial variation in ambient temperature that different age groups are exposed
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to. Analysis of relative deprivation across the region indicates more deprived populations are located in the
warmest parts of the city.

© 2017 Published by Elsevier B.V.
1. Introduction

1.1. Heat exposure and health

Heatwaves, or extended periods of hot weather, are associated with
various risks to health including heat exhaustion, heatstroke, emergen-
cy hospitalisations, and death. A severe heatwave in August 2003 has
been associated with up to 70,000 excess deaths across Europe
(Robine et al., 2008),with over 2000 excess deaths estimated in England
(Johnson et al., 2005), and a record breaking maximum temperature of
38.5 °C reached in south east England. High temperatures were also re-
corded throughout much of the UK during the summer of 2006. In the
West Midlands, the two heatwave events of 2003 and 2006 were com-
parable in terms of estimated excessmortality, being around 10% higher
than baseline rates at this time of year in both cases (Health Statistics
Quarterly, 2006; Johnson et al., 2005). In the future, heatwaves are
projected to become more frequent, more intense, and last longer, due
to climate change (Kirtman et al., 2013), which will likely lead to in-
creases in heat-related mortality (Hajat et al., 2014; Mitchell et al.,
2016; Vardoulakis et al., 2014). Some evidence suggests there is an
upper limit to which humans can adapt to temperature (Arbuthnott
et al., 2016; Sherwood and Huber, 2010).

In the UK, the risk of temperature-related mortality is projected to
increase steeply in the UK over the 21st century under climate change
and demographic change scenarios, reaching 260% by 2050, and 540%
by 2080 (compared with the 2000s heat-related mortality baseline of
around 2000 premature deaths), with the elderly being most at risk
(Hajat et al., 2014; HPA, 2012).

Future climate projections are often produced at relatively coarse
spatial resolution, due to the cost of computing power required. Factors
relevant for the study of heat-exposure and human health, including
population age, socioeconomic factors, and the built environment such
as dwelling type and the Urban Heat Island, are at a much finer spatial
scale. Our study aims to simulate ambient temperature across an
urban area during a heatwave period, and subsequently quantify the
variation in ambient temperature with other factors that relate to and
influence heat-related health effects. This includes population-
weighting of ambient temperatures, as well as calculating the ambient
temperature weighted according to distributions of different housing
types, population age, and deprivation score, all factors that influence
heat-health relationships. Using environmental modelling techniques
in this way to look at human health in relation to heat exposure during
heatwaves (which will become increasingly important in the future
with climate change) is a novel way of analysing spatial distribution of
risks across a large urbanised region. While we have used a detailed
case study here, the technique andmetrics are applicable to any scenar-
io, which we feel is useful for a wider scientific community.

1.2. The Urban Heat Island (UHI)

Populations may be particularly at risk from heat due to the Urban
Heat Island (UHI) effect (Heaviside et al., 2017), whereby ambient tem-
peratures are often observed to be higher than those in surrounding
less-urbanised areas, particularly at night. The main cause of the UHI
is the modification of land surfaces, for example, replacing natural sur-
faces (e.g. vegetation which provide natural shading and cooling via
evaporation) by paving or construction of buildings. Urban construction
materials (such as concrete, tarmac and asphalt) generally absorb, re-
tain and re-radiate heat more than natural surfaces. Buildings also
provide multiple surfaces to reflect and absorb sunlight, increasing
urban heating, and impeding air circulation. Heat from human activities
(such as air conditioning, vehicles, and industrial processes) can also
add to the UHI effect. The UHI effect is often most extreme during anti-
cyclonic summer weather conditions, which are associated with
heatwaves. In England and Wales, 82% of the population reside in
urban areas (ONS, 2011), leaving them vulnerable to the impacts of
heat exposure due to the UHI effect. The West Midlands is a highly
urbanised area of the UK, which includes the city of Birmingham with
a population of 1.1 million, and has a notable UHI (Bassett et al., 2016;
Heaviside et al., 2015; Tomlinson et al., 2012). A health impact assess-
ment for the heatwave of 2003 based on high resolutionmeteorological
modelling suggested that in theWestMidlands, around half of the heat-
related mortality during the heatwave could be attributed to the UHI
(Heaviside et al., 2016). The UHI intensity is often defined as the differ-
ence in temperature between urban and rural areas, and can be quanti-
fied by comparing ambient air temperature observations at a location in
the centre of an urban area, and at a location in surrounding rural areas
(Bassett et al., 2016; Hatchett et al., 2016; Ketterer and Matzarakis,
2015; Kim and Baik, 2002; Oke, 1973, 1982), or from satellite measure-
ments (Azevedo et al., 2016; Benz et al., 2017; Du et al., 2016). However,
observation stations are limited in number, are often not sited within
urban centres, and may only cover certain time periods, while satellite
measurements record land surface temperature (rather than air tem-
perature), and are often temporally limited and may have missing
data if it is cloudy. The use of meteorological computer simulations
makes it possible to investigate spatial variations in temperature across
urban areas, and to quantify the UHI intensity, by comparing tempera-
tures simulated both with andwithout urban surfaces such as buildings
and roads.

1.3. Mapping spatial variation in heat-exposure and risk

Heat exposure for urban populationswill vary across urbanised areas,
due to spatial variations in physical infrastructure that influences theUHI.
Susceptibility to health risks associated with heat exposure is also influ-
enced by other factors, including population age, housing type, socio-
economic factors, pre-existing health conditions, and location within
the UHI (Taylor et al., 2015;Wolf andMcGregor, 2013). It is therefore im-
portant in terms of health protection to understand the pattern of risk
across a region, which may help target resources to reduce heat risk in
the most vulnerable areas, since it is possible that environmental risks
and vulnerable population groups are co-located within urban areas.

A number of studies have investigated heat risk across the Greater
London area. Wolf and McGregor (2013) developed a Heat Vulnerability
Index (HVI) for London based on principal component analysis of socio-
demographic factors relating to heat vulnerability, combined with land
surface temperatures (derived from a satellite measurement), finding
clustering of high vulnerability in the east and central areas of the city.
Heat risk has also been mapped across London using a building physics
model and monitored weather data, together with information on
modelled UHI, housing type and population age, finding that building
type andUHI have a significant influence on the distribution of risk across
the city for summer 2006 (Taylor et al., 2015). Building fabric types and
characteristics, and thus thermal properties, will depend on the age of
the building, and may be an important modifier for thermal comfort
and energy efficiency, in addition to behavioural aspects of building occu-
pancy that can also modify heat exposure risk (Vardoulakis et al., 2015).
An existing spatial heat risk assessment of Birmingham combined
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information derived from credit reference agencies on groups such
as the elderly, those with ill health, high population density, and
high-rise living, finding that population sub-groups with ill health,
and who reside in flats were located in the overall warmest and
therefore highest heat risk areas of Birmingham (Tomlinson et al.,
2011). This study used remote satellite sensing of the land surface
temperature at high spatial resolution (1 km), although only a single
snapshot over one night during a heatwave is used, and as such, does
not fully represent the range of temperatures that population is ex-
posed to during the heatwave period. Similar studies in large urban
areas worldwide have found spatial overlap of sensitive populations
and inequity in exposure to the UHI, according to age, occupation, in-
come, and other socio-demographic indicators, and that mapping
can help target efforts to reduce heat risk (e.g. via planning the loca-
tion of parks, cool or green roofs, and social care efforts) (Mitchell
and Chakraborty, 2015; Weber et al., 2015; Wong et al., 2016).

While mapping of risks can be a useful tool for raising public aware-
ness of risks, it is not clear if producing maps in this way leads to policy
or mitigation actions, possibly due to uncertainty in relation to policy
and decision making that are difficult to address in such studies (Wolf
et al., 2015). There is an increasing amount of temperature data avail-
able from satellite measurements, but this dataset only gives the tem-
perature of the surface the satellite detects (e.g. the ground, tree tops
or building roofs and walls), rather than air temperature which is
more relevant for health, while the relationship between ground and
air temperature is difficult to quantify. We address these issues by
using simulated temperatures and quantifying heat exposure due to
the UHI for populations which could be seen to be at risk.

1.4. Centres for health and social care

Care homes and hospitals are places where sensitive populationsmay
reside. During the 2003 heatwave across Europe, of the recorded the re-
corded mortality among the under 75 s in the UK, more of the excess
deaths were distributed in residential and nursing homes than would
have been expected, and among the over 75 s, more of the excess deaths
were distributed in hospitals and nursing homes (Kovats et al., 2006). In
these settings there may be issues surrounding dependency on care-
givers in nursing and residential homes, and the impact this may have
on patients' and residents' behaviour in responding to environmental
changes (e.g. disempowerment or loss of autonomy), as well as availabil-
ity of assistance for daily living tasks in institutions (Belmin et al., 2007;
Brown and Walker, 2008). Reports suggest care schemes have a ‘culture
of warmth’, a perception that the elderly are vulnerable only to cold
(not excessive heat), and that design for overheating is rare, with low
prioritisation for future climate change and overheating (Gupta et al.,
2016).

Those in prisons or custodial facilities are not able to directly access
health care services, and effective ways to reduce exposure to heat may
be limited. While there are few studies examining heat risk in prisons,
lawsuits were successfully brought against prisons in Texas and Louisi-
ana in the US, where inmates had died or suffered as a result of heat ex-
posure (Human Rights Clinic, 2015; The Promise of Justice Initiative,
2013). The population in the UK is ageing, as is the prison population.
Not only has the prison population in the UK increased from 56,000 to
over 85,000 in the last ten years, the number of those aged 60 and
over in custody are the fastest growing group, increasing by 120%
from 2002 to 2013 (House of Commons, 2013; Offender management
statistics quarterly, 2016). Other factors such as drug use, as well as
prevalence of mental health conditions among those in custody may
also contribute to health risk from exposure to heat.

1.5. Social and demographic factors

As well as the elderly, babies and young children are also vulnerable
to effects associated with heat exposure (PHE, 2015). Studies have
shown that warmer classrooms (25 °C compared to 20 °C) are detri-
mental to educational attainment (Wargocki and Wyon, 2007), and
school children feel lethargic when temperature and relative humidity
are high (Salthammer et al., 2016). Urbanisation and climate change ad-
versely affect thermal comfort and air quality in schools, and the impact
of such exposure may go beyond discomfort or ill health, leading to a
lifelong burden of disease (Salthammer et al., 2016).

Relationships between heat-related mortality and socio-economic
and demographic factors vary regionally across the globe. Relationships
have been found in some regions between heat-related mortality and
factors such as age, gender, those classed as urban-poor, and areas
with a lack of high-income earners (with income believed to be a
good proxy for access to air conditioning), however, these are often
not consistent between countries, in some cases showing no clear rela-
tionship for other socio-economic indicators (Hondula and Barnett,
2014; Johnson and Wilson, 2009; Yu et al., 2010). In the UK, regional
long time-series analysis showed the strongest heat-mortality effects
were in London, and the strongest cold effects in the East of England.
A stronger heat effect was found for those living in urban areas, with
no difference for cold effects. Indices of deprivation were not found to
be a modifier for heat effects, and only slightly for cold effects in some
rural areas, though this is influenced by how well individual circum-
stances are represented by area-level indicators (Hajat et al., 2007).

TheWorld Health Organization (WHO) identified common heat risk
factors including being elderly, having pre-existing cardiovascular or re-
spiratory disease, living alone, working outdoors or being involved in
heavy labour indoors close to industrial heat sources (World Health
Organization, 2015). In some places, gender, nature of dwelling (e.g.
hospital or care home), being urban and poor, and having certain med-
ical conditions such as diabetes may also be linked with greater
temperature-health effects, though causality is complex to determine
as certain types of factors may interact with other determinants of
health, as well as access to health-care systems (World Health
Organization, 2015). Some indicators of socioeconomic status may be
associated with heat-related health effects, though inconsistencies
exist between studies, with different associations reported between
countries, regions and cities within. There is also some evidence that
temperature modifies the health effects of some air pollutants, such as
ozone (Jerrett et al., 2009; World Health Organization, 2015).
1.6. Summary and aims

Wehave identified awide range of factors that are likely to influence
the risk of heat-related health effects, including housing type, popula-
tion age, deprivation indices, and those residing in care and health facil-
ities. People who experience multiple risk factors may be more
vulnerable during periods of hot weather. An analysis of the spatial dis-
tribution of multiple risk factors across a region may reveal co-location
of such factors, and identify places when strategies to mitigate heat risk
might be most effective.

We address these issues as part of an urban case study for two re-
cent significant heatwave events. We investigate firstly variations in
environmental risk factors across the city (temperature, UHI intensi-
ty, and thermal comfort indices), and secondly, distribution of other
factors which may relate to vulnerability from environmental risks
(age, housing type, and deprivation index). A spatial analysis allows
us to determine whether these sets of risks are co-located within our
study city of Birmingham and the West Midlands region of the UK.
Thirdly, we investigate the position of specific locations where sensi-
tive populations are likely to be based, such as hospitals, care-homes,
schools, and prisons, with respect to the intensity and position of the
UHI, with the hypothesis that since these types of institutions are
often situated in urban centres, populations may be at risk from ex-
posure to high temperatures as a consequence of the effects of the
UHI.



Fig. 1. (a) The domains covered by the WRF model simulation. The central domain (red box) is expanded in Fig. 1(b); (b) Urban classifications used in the urban canopy scheme in the WRF
model in the central domain. The area shown covers approximately 80 × 80 km. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of
this article.)

1 Output Areas are the lowest geographical level at which census estimates are provid-
ed. There are 181,408 Output Areas in England andWales. The average population per OA
is 309.

2 Lower Super Output Areas have an average of ~1500 residents and 650 households.
Measures of proximity (to give a reasonably compact shape) and social homogeneity (to
encourage areas of similar social background) are also included. There are 34,753 LSOAs
in England and Wales. http://neighbourhood.statistics.gov.uk/.
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2. Methods and data

In this study we first modelled the ambient air temperature at a
height of 2 m across theWestMidlands, and quantified the UHI intensi-
ty across the region for the heatwave periods (August 2003 and July
2006) using a mesoscale meteorological model. Using GIS techniques
we then extracted (from the modelled data) and analysed the ambient
temperatures that correspond to different risk factors such as popula-
tion age, dwelling type, and deprivation indices.

2.1. Modelling temperature

The Weather Research and Forecasting (WRF) model is a regional
weather model that can be run at high resolution (1 km) to simulate
the meteorology across a region (Chen et al., 2011). We used the WRF
model with four nested domains (Fig. 1a) each with grid resolutions of
36 km, 12 km, 3 km, and 1 km in the smallest (central) domain, with
feedback of variables from smaller grids to parent grids. The model
time-step was 180, 60, 20 and 5 s for the four domains, respectively,
with output every hour. Initial and lateral boundary meteorological con-
ditionswere provided by the European Centre forMedium-rangeWeath-
er Forecasts (ECMWF) ERA-interim reanalysis (Dee et al., 2011) at a
spatial resolution of 0.5° every 6 h. There were 39 pressure levels above
the surface to 1 hPa. We used an urban canopy scheme, Building Energy
Parameterisation (BEP), which models the effect of buildings on energy
and momentum fluxes inside and immediately above the urban street
canyons (Heaviside et al., 2015; Martilli et al., 2002). Information on
building and road properties (e.g. building height, street canyon width,
material properties such as albedo, thermal conductivity and heat capac-
ity) is included for three urban categories: Industrial/commercial, high-
intensity residential, and low-intensity residential across the West Mid-
lands region (Fig. 1b). Details of parameters used for each urban category
are given in Table 1a. Land-surface data used as an input to WRF for all
domains were based on the US Geological Survey (USGS) 24-category
land-use data, and for the inner domain we used two local datasets to
generate the urban categories. We used the Noah Land Surface Model, a
relatively complex community model, which is often coupled with an
urban canopy scheme, and has four layers of soil moisture and tempera-
ture (Tewari et al., 2004).

The model has been previously run for this region for the August
2003 heatwave; details of the model simulation and validation are de-
tailed in Heaviside et al. (2015). We have extended the analysis by re-
running the 2003 heatwave using an updated version of WRF (v3.6.1),
and including a further simulation run during a heatwave period in
July 2006. In order to test performance, the model output is compared
with observations from MIDAS observational weather stations across
the West Midlands (Met Office, 2012). During heatwave periods, air
temperature becomes more sensitive to surface moisture properties,
which can be difficult for themodel to capture. Soil moisture was adjust-
ed in themodel to better account for the unusually dry conditions, which
led to improvements in the model performance (Fig. 2 and Table 2).

We ran themodel for two heatwave periods (2nd–10th August 2003,
and 16th–27th July 2006), and in order to quantify the UHI intensity, two
simulations were run for each heatwave period. An ‘urban’ simulation
was run as described above, using the urban categories shown in
Fig. 1b, and is intended to represent the urban morphology of Birming-
ham and the West Midlands. The simulation is then run again, but with
urban land cover replaced by rural cropland and pasture in the innermost
domain, as a theoretical ‘rural’ case. By comparing results between the
‘urban’ and ‘rural’ simulations, the UHI intensity can be quantified.

The temperature that people experience or ‘feel’ can be influenced
by a number of factors such as humidity, wind speed, exposure to direct
solar radiation, and the amount of clothing they are wearing (Höppe,
1999; Steadman, 1984). National weather services sometimes provide
a ‘heat index’ or ‘apparent temperature’ as part of weather forecasts
during periods ofwarmerweather, to account for the effect of humidity,
with assumptions about human body mass, height, clothing, amount of
physical activity, sunlight and ultraviolet radiation exposure, and the
wind speed. The heat index is calculated from temperature and relative
humidity following themethod of the NOAAWeather Prediction Center
(www.wpc.ncep.noaa.gov/html/heatindex_equation.shtml). This calcu-
lation is a refinement of a result obtained by multiple regression de-
tailed in National Weather Service (NWS) Technical Attachment (SR
90–23). Accounting for the humidity only significantly influences the
heat index above about 26 °C, and this calculation is not valid for ex-
tremes of temperature or humidity (Steadman, 1984).

2.2. Population and built environment characteristics

Population data are taken from the National Population Database
(2015) gridded at 100 m resolution, which gives total population at
each grid point. Information on age groups is available at Output Area1

(OA) level from the most recent census (2011), and attached to each
100 m population point based on which OA the point falls within. The
information is then summed across each WRF 1 km grid box.

Data on housing type was obtained at Lower Super Output Area2

(LSOA) level from the most recent census (2011, available from infuse.

http://www.wpc.ncep.noaa.gov/html/heatindex_equation.shtml
http://infuse.ukdataservice.ac.uk
Image of Fig. 1
http://neighbourhood.statistics.gov.uk


Table 1
(a) Details of urban categories used in BEP. (b) General WRF model setup details.

(a)

Category 1: Industrial/commercial 2: High-intensity residential 3: Low-intensity residential

Albedo Roof 0.1989 0.1997 0.2027
Wall 0.1989 0.1997 0.2027
Ground 0.1989 0.1997 0.2027

Surface emissivity Roof 0.9239 0.9274 0.9292
Wall 0.9239 0.9274 0.9292
Ground 0.9239 0.9274 0.9292

Average building height 25 m 15 m 10 m

(b)

Model setting Option Reference

Long wave radiation Rapid Radiative Transfer Model (RRTM) Mlawer et al. (1997)
Short-wave radiation Dudhia scheme Dudhia (1989)
Boundary layer physics Bougeault–Lacarrere (designed for use with BPE urban scheme) Bougeault and Lacarrere (1989)
Urban physics BEP urban scheme Martilli et al. (2002)
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ukdataservice.ac.uk). Data is available on the number of dwellings of
each type within each LSOA. The number of dwellings of each housing
type in eachWRFmodel grid box is calculated by summing the fractions
of each LSOA that intersectwith each grid box, with housing assumed to
be distributed evenly across each LSOA. This is combined with the 2 m
air temperature simulated in the model during the heatwaves of 2003
and 2006, to estimate the average ambient temperature that different
housing types across the West Midlands are co-located with. Informa-
tion on housing type was available (e.g. detached, terrace, flat, etc.)
but information on housing age was not recorded spatially.

The locations of hospitals, care homes, child care centres, schools,
and prisons were considered where ‘sensitive populations’ are more
likely to reside. The National Population Database provides information
on these locations as theymay have high densities of residents, many of
whommaynot be able to protect themselves (others have a duty of care
towards them). People at these locations may be more vulnerable to
harm and potentially harder to evacuate in an emergency situation.
The temperature at the location of each of the centres of interest is ex-
tracted from the (hourly) model output using bilinear interpolation to
the nearest modelled grid points. The mean temperature anomaly for
each location is calculated by taking themean temperature at the select-
ed location over the heatwave period, and subtracting the mean tem-
perature across the entire domain for the same period.

The English Indices of Multiple Deprivation (IMD) scores and ranks
are produced periodically by the Department for Communities and
Local Government, and are the official measure of relative deprivation
for small areas (LSOA based on the 2011 census) in England. The IMD
brings together 37 different indicators which cover specific aspects or
dimensions of deprivation, such as income, employment, health and
Fig. 2. (a) Modelled and observed ambient temperatures at MIDAS sites across theWest Midlan
unadjustedmodel. Unadjusted simulation is shown in red, and simulationwith reduced initial m
to ‘REF’ on the horizontal axis. (For interpretation of the references to colour in this figure lege
disability, education, skills and training, barriers to housing and services,
living environment, and crime, which are then weighted and combined
to create the overall IMD scores for each LSOA (ONS, 2007). For this
work, IMDs for 2007 were used, as this is the closest available year to
those modelled using WRF. The IMD score at LSOA level is attached to
each 100 m population grid point, and then these are used to calculate
population-weighted IMD scores for each WRF 1 km grid-box. Once
the IMD scores for each WRF grid box are calculated, these are then as-
sociated with the temperatures from the WRF model, and ranked rela-
tive to each other, from least- to most-deprived. The data is then split
into population deciles (in order of least to most deprived), and the as-
sociated temperatures plotted.
3. Results

3.1. Environmental risks

3.1.1. Temperature/heat index
Fig. 3a shows the modelled mean 2 m air temperature from 2nd–

10th August 2003, and Fig. 3b shows the same for 16th–27th July
2006. The observed average and the overall minimum temperatures
are higher by 1.3 °C in 2006 compared with 2003. Average daily max-
imum ambient temperatures are similar (difference of 0.3 °C),
though temperatures reached at least 30 °C on more days in 2006
than 2003 (see Fig. S1 in Supplementary material). Comparison of
Fig. 3 with the land use in Fig. 1b shows that urban areas are gener-
ally warmer than the surrounding rural areas in the West Midlands
modelled domain.
ds in July 2006. (b) Taylor diagram showing statistical comparison between adjusted and
oisture is shown in blue. A better comparisonwith observations is indicated by proximity
nd, the reader is referred to the web version of this article.)

http://infuse.ukdataservice.ac.uk
Image of Fig. 2


Table 2
Statistical comparison between observed air temperature, and modelled temperatures (with soil moisture adjustment).

Edgbaston Coventry Coleshill Church Lawford

Observed Modelled Observed Modelled Observed Modelled Observed Modelled

Mean (°C) 22.54 22.59 22.31 22.64 22.12 22.44 22.32 22.24
Standard deviation (°C) 4.54 4.95 4.78 5.11 5.19 5.15 5.21 5.40
RMSD (°C) – 1.62 – 1.81 – 1.79 – 1.79
Correlation – 0.94 – 0.94 – 0.94 – 0.94
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The average calculated heat index for each of the heatwave periods
is shown in Supplementary Fig. S2. The pattern and magnitude are
very similar to the 2m temperatures shown in Fig. 3. Additional discus-
sion of the heat index may be found in the Supplementary material.
3.1.2. Urban Heat Island
The average UHI intensity across the whole period (defined as the

difference in 2 m temperature between a simulation with urban land
cover and a simulation with rural land cover) for both heatwave pe-
riods is shown in Fig. 4. Statistics for the two heatwaves are shown in
Table 3.

While higher average temperatures were reached across the do-
main during the 2006 heatwave than the 2003 heatwave (Fig. 3),
the magnitude and spatial distribution of the UHI intensity remains
remarkably similar (Fig. 4). There are broad similarities in the spatial
and temporal diurnal patterns of the UHI intensity between the two
heatwaves (Fig. 4, Fig. S2), although some localised differences exist.
The average UHI intensity in the city centre was slightly higher in
2003 (+2.2 °C in 2003 compared with +2.0 °C in 2006), but the
UHI intensity at night time was larger in 2006 (+3.1 °C in 2006 com-
pared with +2.5 °C in 2003).

By combining the data from the two heatwave periods, we have a
larger dataset available to analyse the distribution of temperatures,
and the UHI effects typical during heatwaves across the region. Fig. 5
shows the spatial distribution of the UHI intensity across theWestMid-
lands, determined from both the August 2003 and July 2006 heatwaves
combined, and illustrates themore intenseUHI effect at night time com-
pared with during the day.

The heat index and the difference in heat index between urban and
rural simulations are shown in Supplementary material (Figs. S2 and
S3), and very similar patterns to theUHI are shown. The specific humidity
(i.e. water vapourmixing ratio) is lower in the urban simulation (Supple-
mentary Fig. S4) due to the presence of urban surfaces replacing vegetat-
ed ones that would otherwise provide a supply of moisture to the
Fig. 3.Mean 2 m air temperatures simulated across theWest Midlands during (a) heatwave pe
2006. Lettered points show monitoring stations used for model validation. EB = Edgbaston; CH
surrounding air. Overall the average impact of urban surfaces on 2m tem-
perature and the average impact on the heat index are almost identical
(Fig. 5 and Fig. S3).
3.2. Social factors

3.2.1. Housing
Buildings are an important modifier to population exposure to heat,

with different types of housing being more or less susceptible to
overheating, for example top-floor flats are more likely to overheat
than detached houses (Beizaee et al., 2013; Symonds et al., 2017;
Taylor et al., 2015). Fig. 6 shows the average 2 m air temperature that
different housing types across the West Midlands are co-located with
during heatwave periods, compared to the average temperature across
thewhole region. The anomaly represents the difference from the aver-
age temperature across the entire region for the time period considered
(this temperature, representing zero anomaly, is labelled at the base of
the vertical axis on the right). The average temperature across all hous-
ing types in the region is shown by the horizontal bar (again with abso-
lute value labelled at the right axis). Detached houses, which tend to be
located towards more suburban areas, are co-located with ambient
temperatures almost 0.2 °C lower than the average for all housing
types. By contrast, terraced houses andflats are co-locatedwith ambient
temperatures over 0.1 °C higher than the average for all housing types in
the region, and 0.6 °C warmer than the whole domain average temper-
ature. Our analysis shows that housing types which are more likely to
overheat (e.g. flats) are often located in the warmest parts of the city,
and the effects are much larger at night (Fig. 6b). The differences be-
tween ambient temperatures for each housing category are all statisti-
cally significant (p b 0.05; see Supplementary material for details).
While the temperature variation between different housing types is
b1 °C, it should be noted that the average UHI intensity for the region
was about 0.6 to 0.7 °C (and just over 2 °C in the centre of the urban
area) during heatwaves.
riod from 2nd–10th August 2003, and (b) for the heatwave period during 16th–27th July
= Coleshill; CV = Coventry; CL = Church Lawford.

Image of Fig. 3


Fig. 4.MeanUHI intensity for thewhole time-period across theWestMidlands (a) 2nd–10th August 2003, and (b) 16th–27th July 2006. Snapshots of highUHI intensity for each period are
shown in (c) 11 pm5th August 2003, and (d) 11 pm17th July 2006. Lettered points showmonitoring stations used formodel validation. EB=Edgbaston; CH=Coleshill; CV=Coventry;
CL = Church Lawford. Note that the colour scales are not all equal. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)
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3.2.2. Population age
Fig. 7 shows the average outdoor temperature anomalies differ-

ent age groups are exposed to, based on residential address. The
anomaly represents the difference from the average temperature
across the entire region for the time period considered (this temper-
ature, representing zero anomaly, is labelled at the base of the verti-
cal axis on the right). The average across all age groups is shown by
the horizontal bar (again with absolute value labelled at the right
axis). The whole West Midlands population is exposed to tempera-
tures about +0.6 °C higher than the regional average (as populations
reside in more urbanised areas) (Fig. 9a). Young adults and the very
young are exposed to slightly higher temperatures than the popula-
tion average (e.g. 20–24 year olds reside in areas +0.7 °C warmer
than the regional average of +0.6 °C), while the elderly are exposed
to slightly lower temperatures than the population average (e.g. 65–
Table 3
Statistics for modelled temperature and the UHI intensity for the two heatwave periods in Aug

Average temp (°C) Average UHI (°C) Daytimea average

Aug 2003 Regionalb 20.5 +0.7 +0.5
City centrec 21.7 +2.2 +2.0

July 2006 Regionalb 21.7 +0.6 +0.1
City centrec 23.0 +2.0 +1.0

a Daytime is defined as 08:00–19:59; Nighttime is 20:00–07:59.
b Regional is the whole area shown in Fig. 1a.
c City centre is a point in the centre of Birmingham city.
75 year olds reside in areas +0.5 °C). During the daytime, there is
only a modest difference in ambient temperatures exposure in com-
parison to the regional average; however at night time, population-
weighted temperatures are over 1 °C higher than the regional aver-
age (Fig. 7b,c). It should be noted that these figures are based on res-
idential population, so those present in health and care centres are
not considered here. Overall, the differences in exposure to ambient
temperatures for different population groups are modest, likely a
reflection that population age groups are less heterogeneously dis-
tributed across this region. The differences between ambient tem-
peratures for each age group are all statistically significant (p b

0.05; see Supplementary material for details), with the exception
of the 15 and the 16–17 year old age groups (p = 0.25), the 60–64
and 65–69 year old age groups (p = 0.069), and the 85–89 and
90+ year old age groups (p = 0.055).
ust 2003 and July 2006.

UHI (°C) Nighttimea average UHI (°C) Max UHI (°C)

+1.0 +6.1 (5 pm 10th; 11 pm 5th; 9 pm 9th)
+2.7
+1.2 +9.6 (11 pm 17th)
+3.1

Image of Fig. 4


Fig. 5. (a) Average UHI intensity during heatwave periods (2–10 Aug 2003 and 16–27 July 2006) across the West Midlands; Averages over (b) daytime and (c) night time. Average UHI
intensity was +2.1 °C (+1.4 °C in daytime, +2.9 °C at night time).
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3.2.3. Deprivation
Fig. 8 shows the average ambient temperature exposure for increas-

ingly deprived population deciles, calculated from population weighted
scores across the domain ranked relative to each other. The anomaly
Fig. 6. (a) Average outdoor temperature anomaly (comparedwith the average across the domai
is also broken down into (b) night time and (c) day time.
represents the difference from the average temperature across the en-
tire region for the time period considered (i.e. day, night, or all times).
The horizontal line shows the population weighted temperature for
the time period. The most deprived decile of population across the
n during the heatwave period)with standard deviations plotted over the bars. The analysis

Image of Fig. 5
Image of Fig. 6


Fig. 7. (a) Average outdoor temperature anomaly (compared with the average across the domain during the heatwave period) for different age groups across the West Midlands, with
standard deviations plotted. The analysis is also broken down into (b) night time and (c) day time.
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region is exposed to temperatures +1.0 °C higher than the average for
the region (+0.5 °C during the day, and+1.5 °C at night). Themost de-
prived decile of population for the region experiences temperatures
consistently higher than the average for the region, even during the
daytime (each decile represents ~0.5 million people). The overall
Fig. 8. (a) Average outdoor temperature anomaly (compared with the average across the dom
West Midlands, with standard deviations plotted. The analysis is also broken down into (b) ni
deprivation scores for all LSOAs in England range from 0.37 to 85.46.
For comparison, the deprivation scores calculated for each decile in
Fig. 8 range from 6.08 to 56.17, placing them around the 12% and 96%
most deprived relative to England. The differences between ambient
temperatures for each deprivation decile are all statistically significant
ain during the heatwave period) for population deciles ranked by deprivation across the
ght time and (c) day time.

Image of Fig. 7
Image of Fig. 8
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(p b 0.05; see Supplementarymaterial for details), with the exception of
deciles 4 and 5 (p = 0.989).

3.3. Location based assessment of vulnerability from heat

Sensitive receptors such as hospitals, care homes, child care facilities,
schools, and prisons tend to be located in the most highly urbanised
areas of the region, with the exception of prisons which are often locat-
ed on the outskirts of the city. The distribution of temperature anoma-
lies for each location type is shown in Fig. 9. The anomalies are based
on the number of receptors (i.e. buildings), and not the population at
each location, as this will fluctuate. The majority of hospitals, care
homes, schools and child care centres are located in areas warmer
than the domain average (94% of hospitals, 90% of care homes, 87% of
schools, and 88% of child care centres). There are seven prisons located
within the study area, with only two of these being warmer on average
(Fig. 9e).

4. Discussion

In this study we used hourly ambient temperature data at high spa-
tial resolution (1 km) across a densely populated region of the UK, cap-
turing temperature variation across the period of two different
heatwave episodes. We employ environmental modelling techniques
to examine human health in relation to heat exposure during
heatwaves, which will become increasingly important in the future as
climate change is projected to increase heat-health impacts. Previous
studies have examined the spatial distribution of vulnerability to heat
risk across a region, often using ambient temperatures that are time-
varying but have no spatial variation, or that are well represented spa-
tially but only for a single or limited time frame (Taylor et al., 2015;
Tomlinson et al., 2011; Wolf and McGregor, 2013). By using well-
validated meteorological modelling techniques, we have generated an
ambient temperature dataset, based on modelled output, at high tem-
poral and spatial resolution from which to calculate ambient tempera-
tures exposure co-located with various risk factors that relate to and
influence heat-related health effects. These include population-
weighted temperature exposure and the relationship between UHI in-
tensity and demographic factors such as age group. Previous studies
have mapped such risks, but our work extends this analysis by calculat-
ing the ambient temperatureweighted according to distributions of dif-
ferent housing types, population (including age), and deprivation score,
all being factors that influence heat-health effects. We have also broken
down the analysis by day and night; while the whole region is warmest
during the daytime (and urban areas are still warmer than rural ones at
this time), the spatial variation in temperature across the region ismuch
greater at night, due to the influence of the UHI (Fig. 5). While there is
no clear indicator of which temperature metric is most strongly corre-
latedwithmortality, and there is variation between countries and cities
(Davis et al., 2016), highmortality ratios have been associatedwith high
night time land surface temperatures during the August 2003 heatwave
in Paris (Dousset et al., 2011), and there is evidence that higher night
time temperatures have a detrimental impact on sleep quality, which
is linked with other negative health outcomes (Lack et al., 2008).

We found that almost all locations where sensitive populations are
likely to be located (hospitals, care homes, schools, colleges) were
warmer than the regional average by up to 2 °C, and the number that
arewarmer is greater at night time (Fig. 9). Of the seven prison locations
within the study area, most were located in more rural or suburban
areas, and therefore were not exposed to higher average ambient tem-
peratures for this region.

Locations classified as hospitals here include a few small treatment
centres such as family planning, dialysis centres, etc., and therefore do
not necessarily have resident populations who might be exposed to
the larger temperature anomalies at night. Locations classed as care
homes have a high density of residents, present day and night, and
also include centres with specialised facilities for those with mental
health issues, sensory impairment, learning difficulties, and those who
misuse drugs and alcohol. Child care centres have a duty of care to pro-
tect people who cannot protect themselves, with potentially high pop-
ulations, including nurseries, crèches, toddler groups, afterschool
clubs, holiday schemes, and youth clubs. School locations are unlikely
to be occupied at night, when temperature anomalies are higher, and
those of school age are exposed to ambient temperatures close to the
average for the population (though still above regional average).
While colleges have very high populations, they again are unlikely to
be occupied at night.

The anomalies presented here are based on ambient temperature,
although buildings play an important role in determining actual expo-
sure, particularly at night time. Studies using building simulations to es-
timate indoor temperatures find a significant influence of building
characteristics on indoor temperatures (Taylor et al., 2015). However
these studies often use a single ambient temperature across all dwelling
types, whereas this study shows that different building types are likely
to be exposed to different ambient temperatures across a region. Our
study could help inform development of inputs to building models by
providing a modifier to ambient temperature based on the likely out-
door temperatures for a particular building type.

While we have included the highest spatially resolved data that was
available at the time, the analysismakes some assumptions about distri-
bution of certain factors. Data for housing types at LSOA level, and pop-
ulation ages at OA level was the finest level of data that was available.
Any variations that may exist within an individual LSOA or OA respec-
tively could not be captured by this analysis. The BEP multi-layer
urban canopy scheme used with WRF can capture the effects of the
built environment on energy and momentum fluxes (accounting for
shading and reflections by buildings) at sub-grid scale, providing a suit-
able representation of how urban areas influence meteorology in a
weather model such asWRF. However, microclimatic effects at individ-
ual building level are not explicitly captured, as regional weather
models can only be run down to 1 km horizontal grid scale constrained
by the valid sub-grid scale turbulence schemes, and therefore results for
individual locations interpolated from the 1 km gridmay have addition-
al variation. The IMDs are a measure of relative deprivation, calculated
by weighting data on different indicators that can be used as measures
of deprivation. The IMDs are calculated periodically, and although it is
a goodmeasure for comparing areas with each other, this measure can-
not be easily compared with other years or used to identify trends, as
the ranking is performed separately each time a new dataset is released.

This study focuses primarily on the effects of heat, although other
environmental or socioeconomic factors in cities thatmay impact health
could be considered in future studies. Such factors may include air pol-
lution, flood risk, social isolation or greenspace. Cold effects could also
be investigated. These and other factors identified as influencing health
may be included in future studies to develop and overall environmental
risk map for cities. Finally, this study examines past heatwave events in
two years across the UK, allowing model validation against observa-
tions. Future scenarios under climate change could be considered in fur-
ther work.

5. Conclusions

Previous research suggests that the UHI may contribute around half
of the heat related mortality experienced during heatwaves (Heaviside
et al., 2016). Increasing urbanisation and climate change will increase
heat related health risks in urban areas. We have developed a novel
risk mapping methodology that combines high spatial resolution
modelling of temperature, population age, and building types to identify
locations and population sub-groups at higher health risk during
heatwaves.We have simulated and quantified themagnitude and char-
acteristics of the UHI in the West Midlands during two heatwave pe-
riods (August 2003 and July 2006), using the WRF-BEP model. The



Fig. 9. Distribution of average ambient 2 m temperature at (a) hospitals, (b) care homes, (c) schools, (d) child care centres, and (e) prisons across the West Midlands. The first column
shows the distribution of these locations across the West Midlands, and the next three columns represent the average anomaly averaged first across all times of day, and then broken
down into average daytime anomaly (8 am–8 pm), and average night time anomaly (8 pm–8 am). The average temperature across the domain (used as the reference temperature) is
21.8 °C. Red = positive anomaly (warmer); Blue = negative (colder). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of
this article.)
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UHI intensity across the region is on average 2.1 °C, reaching up to 9.4
°C, and there is strong spatial heterogeneity in ambient temperature
across the region, particularly at night. Spatial analysis using GIS tech-
niques shows that locations where people already more vulnerable to
the effects of exposure to heat (e.g. the elderly, those with pre-
existing health conditions, and those dependent on others for care)
may reside, tend to be located in the hotter parts of the region. Sensitive
receptors (94% of hospitals, 90% of care homes, 87% of schools, and 88%
of child care centres) are co-located with higher than the average air
temperatures across the West Midlands. Buildings that are more sus-
ceptible to overheating, such as flats, are exposed to higher ambient
temperatures than other housing types.

Interventions such as urban greening or buildingmodifications such
as cool roofs may help offset some of the UHI intensity, and reduce the
spatial disparity in ambient temperatures, particularly at night. The re-
sults from this work could help identify which factors are most strongly

Image of Fig. 9
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correlated with ambient temperature, and help target resources and in-
terventions, as well as focus health messaging during heatwaves to the
greatest effect.

Further research is needed to estimate the spatial heterogeneity of
factors influencing heat risk in cities. In addition, future work should
consider the health impacts and potential benefits that UHI mitigation
techniques in a UK city would have on building overheating, as well as
the co-benefits or other unintended environmental consequences that
may occur in a city.
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